Dear Escambia County Producers,

The New Year is well under way, but I’m sure most of you are busy and anticipating the springtime. But before you can savor the warm season of spring, you must get through the most dreaded season of all: TAX SEASON!!

I would also like to draw your attention to one of our upcoming events: Farm Day. This is a multi-county and multi-state effort to learn more about crop production. We have a new location this year: Grace Fellowship Church, so we are sure to have plenty of air-conditioned comfort. Considering how cold it has been, I think this will be a great location to have this event. There are also a number of meeting flyers that might be of interest to you in this newsletter.

Escambia County Extension is offering hands-on gardening programs that feature local plants and gardening practices recommended by University of Florida Extension. Participants must register by calling 475-5230 or emailing bbolles@ufl.edu. Please indicate which program(s) you would like to attend. Registration will close three days before each event. Programs are free. Bring a lawn chair if needed and dress for outdoor weather. Programs are at 3740 Stefani Road, Cantonment.

- Growing Citrus in NW Florida: Friday, February 21, 2014 from 9:00 – 10:30a.m.
- Landscape & Turf Care for New FL Residents: Friday, March 28, 2014 from 9:00 – 10:30a.m.
- Propagation Techniques: Friday, April 11, 2014 from 9:00 – 10:30a.m.
- Spring Festival: Saturday, May 3, 2014 from 8:00a.m. - 12:00noon
- Herbs: Friday, June 20, 2014 from 9:00 – 10:30a.m.
- Shade Gardening: Friday, July 18, 2014 from 9:00 – 10:30a.m.
- Edibles for Fall: Friday, August 15, 2014 from 9:00 – 10:30a.m.
- Butterfly Gardening: Friday, September 19, 2014 from 9:00 – 10:30a.m.

Special thanks to everyone who donated peanut butter to the Peanut Butter Challenge. We were able to distribute peanut butter to more than 18 local food pantries in December. I’d especially like to thank Rodney and Mike Helton and Tri County Peanut—Helton Brothers and Tri County each donated a pallet. It’s because of their generosity that we were able to provide so much of the healthy and tasty product to so many pantries.

I hope to see you at one, or more, of our upcoming programs. Stay warm friends.
Upcoming Events

Forage Management Workshop: Thursday, March 6th, Jerry Jones’ Barn – Jay

Cool season grasses (wheat, ryegrass, oats, triticale, rye) provide valuable winter and spring grazing when the warm season perennial grasses are not growing. The most efficient use of these grasses may be for younger animals or gestating brood cows that need higher quality forage than required by mature animals.

To address these and other forage issues, we are conducting a 17-variety winter forage plot tour, followed by a workshop on Thursday, March 6th at Jerry Jones’ Barn (12011 Highway 89—7 miles south of the red light in Jay).

We will meet ¼ mile south of Jerry Jones’ Barn between 4:00-4:30 and tour the plots from 4:30-5:30. The meal will be from 6:00-6:30 and the meeting will last from 6:30-8:00.

Program speakers will be Dr. Anne Blount, UF IFAS Forage Specialist, and Dr. Cheryl Mackowiak, UF IFAS Soil and Fertility Specialist.

Please reserve your spot for the meal by contact Janis at the Jay Extension Office at 850-675-6654 (janiskay@ufl.edu) by noon on Tuesday, March 4th. We want to have enough food for everyone, so reservations are strongly recommended.

This program is designed for anyone with any interest in forage for any animals—be it cattle, horses, sheep, goats, etc.

NRCS Florida Ag Assistance Applications due on February 21st

Farmers and ranchers can apply until Feb. 21 for conservation technical assistance and financial assistance for the following initiatives:

- **Organic Initiative**—helps producers install conservation practices on USDA certified organic operations or those working toward organic certification.
- **Seasonal High Tunnel Initiative**—helps producers install high tunnels designed to extend the growing season, increase productivity, keep plants at a steady temperature, and conserve water and energy.
- **On-farm Energy Initiative**—helps producers conserve energy on their operations.
- **Longleaf Pine Initiative**—helps private landowners improve the sustainability and profitability of Longleaf pine forest ecosystems.
- **Working Lands for Wildlife Initiative**—provides technical and financial assistance for landowners who voluntarily choose to implement conservation practices that benefit the habitat of the target species—the gopher tortoise in Florida—while continuing to manage the habitat as working lands.
- **Gulf of Mexico Initiative**—helps producers located in the Escambia River and Middle Suwannee River Area watersheds to focus on reducing soil erosion, improving soil health, improving water quality, and wildlife habitat on cropland, pastureland and forestland. Producers in these watersheds can sign up for assistance under this initiative by contacting the local NRCS office below:
 - Escambia County District Conservationist Joshua McElhaney at (850) 587-5404, x3, 151 Highway 97, Molino, FL, 32577
 - Santa Rosa County District Conservationist Trent Matthews at (850) 628-3229, x3, 6285 Dogwood Drive, Milton, FL, 32570-3544

Additional information on NRCS, conservation assistance, and available programs is offered on its website at www.fl.nrcs.usda.gov or at your local USDA - NRCS office. To find the nearest office go to: http://offices.sc.egov.usda.gov/locator/app.
This report included a summary of the 2013 mid- to full-season cotton OVT trial in Jay, Florida. It shows the performance of sixteen cotton varieties. This data represents only one year and one location; test results should be considered over several locations and years before final conclusions are valid.

Mid- to full-season varieties that were evaluated:

1. DP 1050 B2RF
2. DP 1137 B2RF
3. DP 1252 B2RF
4. MON 12R242B2R2
5. CG 3787 B2RF
6. PHY 339 WRF
7. PHY 499 WRF
8. PHY 565 WRF
9. PHY 575 WRF
10. PHY 599 WRF
11. PHY 417 WRF
12. PHY 427 WRF
13. NG 1511 B2RF
14. NG 5315 B2RF
15. FM 1944GLB2
16. ST 6448GLB

2013 Growing Conditions and Experimental Design

The soil type was a Tifton sandy loam that has a history of cotton production. The field was planted in a rotation of peanut and cotton in 2012 and 2011, respectively. Each cotton variety was plated on 14 May under conventional tillage. Plots were four, 25-ft rows with 36-in. row spacing and replicated in four randomized complete blocks. Standard practices for non-irrigated cotton production were followed throughout the season. Stealth 1 qt/A was applied on 8 May for pre-plant weed control, and Roundup 22 oz/A was applied 20 Jun and 31 Jul for post-emergence weed control. Bidrin 8 3.2 oz/A was applied on 31 May, Belay 4 oz/A on 30 Jul and Tombstone 3.2 oz/A on 7 Aug were applied for insect control. Headline 9 oz/A was applied on 30 Jul for disease control. Growth regulator Potenza was applied 12 oz/A on 30 Jul and 16 oz/A on 7 Aug. Takedown 2.0 oz/A, Display 0.5 oz/a were applied on 14 Oct. Cotton was picked on 4 Nov and samples were sent for fiber analysis.

Rainfall in May, June and Oct was 7.1, 0.74, 4.21 in. below normal, respectively; rainfall in Jul, Aug, and Sep was 5.23, 1.37, and 3.65 in. above normal, respectively. Rainfall during the period totaled 33.23 in., which was 1.61 in. below normal. Weather data was obtained from Florida Automated Weather Network (FAWN) station located on Jay research farm and normal represents the mean for the past 54 years of records (Table 1).

<table>
<thead>
<tr>
<th>Month</th>
<th>Total rainfall (in.)</th>
<th>Average minimum air temperature (°F)</th>
<th>Average maximum air temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.7 (7.1 below normal*)</td>
<td>43.0</td>
<td>91.8</td>
</tr>
<tr>
<td>June</td>
<td>5.8 (0.7 below normal)</td>
<td>65.5</td>
<td>93.8</td>
</tr>
<tr>
<td>July</td>
<td>11.8 (5.2 above normal)</td>
<td>67.6</td>
<td>92.9</td>
</tr>
<tr>
<td>August</td>
<td>5.5 (1.4 above normal)</td>
<td>67.5</td>
<td>95.2</td>
</tr>
<tr>
<td>September</td>
<td>8.0 (3.7 above normal)</td>
<td>58.6</td>
<td>93.7</td>
</tr>
<tr>
<td>October</td>
<td>1.7 (4.2 below normal)</td>
<td>38.0</td>
<td>88.1</td>
</tr>
</tbody>
</table>

* Normal represents the mean for the past 54 years of records.
Summary

Stand counts were significantly different on 28 of May; DP 1050 B2RF had the lowest 1.25 plants/ft, while PHY 399 WRF had the highest plant population 2.56 plants/ft (Table 2). Deer damage was noted and dead plants per plot were also enumerated, PHY 427 WRF, PHY 499 WRF, DP 1050 B2RF and NG 1511 B2RF had the most damage, while PHY 599 WRF had the least. Plots were replanted by hand on 12 Jun in areas where deer damage occurred and seed germinated on 17 Jun. A final stand count was taken on 27 Jul and there were no significant differences between varieties, cotton stand ranged from 1.67 to 2.24 plants/ft. Differences in plant height were detected on 15 Aug, PHY 599 WRF was the tallest variety (127.9 cm), while PHY499 WRF was the shortest (93.0 cm). DP 1137, PHY 339 WRF, PHY 575 WRF, NG5315 B2RF, FM 1944GLB2, and ST 6448GLB2 were all greater than 109 cm tall, while DP 1050 B2RF, DP 1252 B2RF, PHY 427 WRF were less than 99 cm tall. The number of flowers open on 15 Aug ranged from 0.70 flowers/plant (DP1252 B2RF and PHY 599 WRF) to 1.70 flowers/plant (PHY499 WRF).

Table 2. Effect of variety on emergence, growth, and flower in cotton.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Plants/ft<sup>1</sup> (28 May)</th>
<th>Dead plants/plot<sup>2</sup></th>
<th>Plants/ft<sup>1</sup> (27 Jul)</th>
<th>Height<sup>3</sup> (cm)</th>
<th>Flowers/plant<sup>3</sup> (15 Aug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 1050 B2RF</td>
<td>1.25 e</td>
<td>26.5 a-c</td>
<td>1.91</td>
<td>96.4 gf</td>
<td>0.88 de</td>
</tr>
<tr>
<td>DP 1137 B2RF</td>
<td>2.17 ab</td>
<td>8.5 cd</td>
<td>2.18</td>
<td>115.0 bc</td>
<td>0.93 c-e</td>
</tr>
<tr>
<td>DP 1252 B2RF</td>
<td>2.07 a-c</td>
<td>14.0 b-d</td>
<td>2.24</td>
<td>97.2 gf</td>
<td>0.70 e</td>
</tr>
<tr>
<td>MON 12R242B2R2</td>
<td>2.12 a-c</td>
<td>21.8 b-d</td>
<td>2.21</td>
<td>105.9 c-f</td>
<td>1.23 a-e</td>
</tr>
<tr>
<td>CG 3787 B2RF</td>
<td>1.61 e-c</td>
<td>16.0 b-d</td>
<td>1.98</td>
<td>106.2 c-f</td>
<td>0.88 de</td>
</tr>
<tr>
<td>PHY 339 WRF</td>
<td>2.56 a</td>
<td>9.8 cd</td>
<td>2.04</td>
<td>110.0 b-e</td>
<td>1.63 a</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>1.82 b-d</td>
<td>35.0 ab</td>
<td>1.98</td>
<td>93.0 g</td>
<td>1.70 a</td>
</tr>
<tr>
<td>PHY 565 WRF</td>
<td>1.84 b-d</td>
<td>10.0 cd</td>
<td>2.23</td>
<td>107.4 c-f</td>
<td>1.03 b-e</td>
</tr>
<tr>
<td>PHY 575 WRF</td>
<td>2.23 ab</td>
<td>23.0 bc</td>
<td>2.03</td>
<td>109.7 b-e</td>
<td>1.25 a-e</td>
</tr>
<tr>
<td>PHY 599 WRF</td>
<td>2.13 a-c</td>
<td>0.8 d</td>
<td>2.01</td>
<td>127.9 a</td>
<td>0.70 e</td>
</tr>
<tr>
<td>PHY 417 WRF</td>
<td>2.14 a-c</td>
<td>13.3 bc</td>
<td>1.57</td>
<td>103.2 d-g</td>
<td>1.68 a</td>
</tr>
<tr>
<td>PHY 427 WRF</td>
<td>1.40 de</td>
<td>47.3 a</td>
<td>2.07</td>
<td>98.7 e-g</td>
<td>1.33 a-d</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>1.73 b-e</td>
<td>28.3 a-c</td>
<td>2.10</td>
<td>104.2 c-g</td>
<td>1.53 ab</td>
</tr>
<tr>
<td>NG 5315 B2RF</td>
<td>1.95 bc</td>
<td>9.3 cd</td>
<td>1.89</td>
<td>115.3 bc</td>
<td>1.25 a-e</td>
</tr>
<tr>
<td>FM 1944GLB2</td>
<td>2.08 a-c</td>
<td>6.8 cd</td>
<td>1.67</td>
<td>112.8 b-d</td>
<td>1.48 a-c</td>
</tr>
<tr>
<td>ST 6448GLB2</td>
<td>2.05 a-c</td>
<td>10.3 cd</td>
<td>1.79</td>
<td>120.1 ab</td>
<td>1.50 a-c</td>
</tr>
<tr>
<td>Mean</td>
<td>1.95</td>
<td>17.5</td>
<td>1.99</td>
<td>107.7</td>
<td>1.23</td>
</tr>
<tr>
<td>LSD</td>
<td>0.55</td>
<td>21.9</td>
<td>n.s.</td>
<td>11.4</td>
<td>0.60</td>
</tr>
<tr>
<td>CV</td>
<td>20.00</td>
<td>87.81</td>
<td>15.33</td>
<td>24.02</td>
<td>110.91</td>
</tr>
<tr>
<td>P(F)</td>
<td>0.0034</td>
<td>0.0101</td>
<td>0.1115</td>
<td>0.0001</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

¹Determined from counts of two, 25-ft rows per plot. Plots replanted due to deer damage.

²Dead plants due to deer damage in plots.

³Height and flower number determined from averaging ten plants per plot. Means followed by the same letter(s) in a column are not significantly different according to Fisher’s Protected LSD (P=0.05).
PHY 339 WRF had the greatest number of open bolls on 16 Sep (22.3 open bolls/5-ft), but wasn’t significantly different from PHY 565 WRF (Table 3). PHY 575 WRF has the lowest number of open bolls (5.5 open bolls/5-ft), but wasn’t significantly different from NG 1511 B2RF, DP 1050 B2RF, DP 1252 B2RF, MON 12R242B2R2, CG 3787 B2RF, PHY 499 WRF, PHY 599 WRF, PHY 427 WRF, FM 1944GLB2, and ST 6448GLB2. PHY 599 WRF and ST 6448GLB2 were the highest yielding varieties in lint+seed, 4344 and 4288 lb/A, respectively. Other varieties with similar yield included DP 1137 B2RF, MON 12R242B2R2, CG 3787 B2RF, PHY 339 WRF, PHY 565 WRF, PHY 575 WRF, NG 5315 B2RF, and FM 1944GLB2. PHY 417 WRF was the lowest yielding variety (2944 lb/A of lint+seed), but it wasn’t significantly different from DP 1050 B2RF, DP 1252 B2RF, PHY 427 WRF, and NG 1511 B2RF. Gin turn-out (GTO) ranged from 36 to 40% lint. NG 5315 B2RF and PHY 599 WRF had the highest lint yield 1620 lbs lint/A (3.38 bales/A), while DP 1137 B2RF, MON 12R242B2R2, CG 3787 B2RF, PHY 565 WRF, FM 1944 GLB2, and ST6448GLB2 has similar yields. PHY 4167 WRF was the lowest yielding mid- to late maturing variety 1122 lb lint/A (2.34 bales/A).

Table 3. Effect of variety on open bolls and yield of cotton.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Open bolls*(16 Sep)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A w</td>
<td>GTO x</td>
</tr>
<tr>
<td>DP 1050 B2RF</td>
<td>6.1 de</td>
<td>3448 c-e</td>
</tr>
<tr>
<td>DP 1137 B2RF</td>
<td>14.8 bc</td>
<td>4024 a-c</td>
</tr>
<tr>
<td>DP 1252 B2RF</td>
<td>6.0 de</td>
<td>3424 c-e</td>
</tr>
<tr>
<td>MON 12R242B2R2</td>
<td>8.6 c-e</td>
<td>4216 ab</td>
</tr>
<tr>
<td>CG 3787 B2RF</td>
<td>6.8 de</td>
<td>3976 a-c</td>
</tr>
<tr>
<td>PHY 339 WRF</td>
<td>22.3 a</td>
<td>3744 a-d</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>11.6 c-e</td>
<td>3632 b-d</td>
</tr>
<tr>
<td>PHY 565 WRF</td>
<td>18.9 ab</td>
<td>3920 a-d</td>
</tr>
<tr>
<td>PHY 575 WRF</td>
<td>5.5 e</td>
<td>3696 a-d</td>
</tr>
<tr>
<td>PHY 599 WRF</td>
<td>10.1 c-e</td>
<td>4344 a</td>
</tr>
<tr>
<td>PHY 417 WRF</td>
<td>15.0 bc</td>
<td>2944 e</td>
</tr>
<tr>
<td>PHY 427 WRF</td>
<td>7.9 de</td>
<td>3320 de</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>5.6 e</td>
<td>3504 c-e</td>
</tr>
<tr>
<td>NG 5315 B2RF</td>
<td>12.1 cd</td>
<td>4184 ab</td>
</tr>
<tr>
<td>FM 1944GLB2</td>
<td>7.8 de</td>
<td>4048 a-c</td>
</tr>
<tr>
<td>ST 6448GLB2</td>
<td>7.4 de</td>
<td>4288 a</td>
</tr>
</tbody>
</table>

Mean	10.4	3795	37.7	1428	2.98
LSD	6.5	651	0.01	247	0.51
CV	62.94	12.04	2.59	12.15	12.15
P(F)	0.0001	0.0021	0.0001	0.0023	0.0023

* Determined from counts in a 5-ft section of each row per plot.

* Weight (lb/A) includes lint + seed.

* GTO = gin turn out lint/seed cotton.

* Weight of lint (lb/A).

* Bales/A are weight of lint only at 480 lb/bale

Plots were harvested on 4 Nov. Means followed by the same letter(s) in a column are not significantly different according to Fisher’s Protected LSD (P=0.05).
Fiber quality was classed at the USDA Classing Office in Memphis, TN. Micronaire (Mic), a measure of fiber fitness and maturity, ranged from 4.3 (PHY 417 WRF) to 4.9 (NG 1511 B2RF) in the mid- to full-maturing varieties (Table 4). Fiber length ranged from 1.12 to 1.20 inches and strength 28.5 to 33.0 g/tex. Uniformity, the ratio between mean length and upper-half mean length of fibers, ranged from 80.8 to 82.8%. HVI color grades included 31-2, 31-4, and 41-1, while leaf grades averaged 2.5 to 4.0. Net loan price which was calculated based on $0.52/lb +/- premiums and discounts and ranged from 53.8 ¢/lb (PHY 339 WRF) to 56.95 ¢/lb (CG 3787 B2RF). Overall value per acre ranged from $631 to $918, with six varieties net values greater than $800, NG 5315 B2RF, DP 1137 B2RF, CG 3787 B2RF, PHY 599 WRF, MON 12R242B2RF, and ST 6448GLB2.

Table 4. Effect of variety on lint yield and fiber quality.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Gin turnout (%)</th>
<th>Lint yield (lb/A)</th>
<th>Mic (Mic)</th>
<th>Fiber length (in.)</th>
<th>Fiber strength (g/tex)</th>
<th>Uniformity (%)</th>
<th>HVI color</th>
<th>Leaf grade</th>
<th>Net loan price (¢/lb)</th>
<th>Lint value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG 5315 B2RF</td>
<td>38.7 a-c</td>
<td>1620 a</td>
<td>4.8 ab</td>
<td>1.13 f</td>
<td>28.5 f</td>
<td>81.2</td>
<td>31-2</td>
<td>2.5 d</td>
<td>56.65</td>
<td>918</td>
</tr>
<tr>
<td>DP 1137 B2RF</td>
<td>39.0 ab</td>
<td>1552 a-c</td>
<td>4.6 bc</td>
<td>1.17 b-e</td>
<td>29.3 d-f</td>
<td>82.7</td>
<td>31-2</td>
<td>2.8 ed</td>
<td>56.95</td>
<td>884</td>
</tr>
<tr>
<td>CG 3787 B2RF</td>
<td>37.3 d-f</td>
<td>1620 a</td>
<td>4.3 d-f</td>
<td>1.17 b-e</td>
<td>30.2 c-e</td>
<td>81.4</td>
<td>41-1</td>
<td>3.5 a-c</td>
<td>54.25</td>
<td>879</td>
</tr>
<tr>
<td>PHY 599 WRF</td>
<td>38.0 b-e</td>
<td>1600 ab</td>
<td>4.8 a</td>
<td>1.16 c-f</td>
<td>29.0 ef</td>
<td>82.8</td>
<td>41-1</td>
<td>3.5 a-c</td>
<td>54.15</td>
<td>866</td>
</tr>
<tr>
<td>MON 12R242B2RF</td>
<td>36.7 ef</td>
<td>1571 a-c</td>
<td>4.8 b</td>
<td>1.18 a-e</td>
<td>30.6 cd</td>
<td>80.8</td>
<td>41-1</td>
<td>3.3 a-d</td>
<td>54.25</td>
<td>852</td>
</tr>
<tr>
<td>ST 6448GLB2</td>
<td>36.0 f</td>
<td>1456 a-c</td>
<td>4.8 a</td>
<td>1.19 ab</td>
<td>33.0 a</td>
<td>81.8</td>
<td>41-1</td>
<td>2.8 cd</td>
<td>54.40</td>
<td>792</td>
</tr>
<tr>
<td>FM 1944GLB2</td>
<td>40.0 a</td>
<td>1372 b-d</td>
<td>4.6 bc</td>
<td>1.15 c-g</td>
<td>29.2 ef</td>
<td>81.9</td>
<td>31-2</td>
<td>2.5 d</td>
<td>56.85</td>
<td>780</td>
</tr>
<tr>
<td>PHY 565 WRF</td>
<td>36.4 f</td>
<td>1432 a-d</td>
<td>4.6 bc</td>
<td>1.15 c-g</td>
<td>31.0 bc</td>
<td>81.4</td>
<td>41-1</td>
<td>3.0 b-d</td>
<td>54.35</td>
<td>778</td>
</tr>
<tr>
<td>DP 1050 B2RF</td>
<td>38.2 d</td>
<td>1344 e</td>
<td>4.5 b-d</td>
<td>1.16 c-f</td>
<td>29.2 d-f</td>
<td>81.9</td>
<td>31-2</td>
<td>2.5 d</td>
<td>56.85</td>
<td>764</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>38.3 b-d</td>
<td>1344 c-e</td>
<td>4.9 a</td>
<td>1.13 g</td>
<td>29.7 c-f</td>
<td>82.1</td>
<td>31-4</td>
<td>3.8 ab</td>
<td>56.30</td>
<td>757</td>
</tr>
<tr>
<td>PHY 575 WRF</td>
<td>36.1 f</td>
<td>1328 c-e</td>
<td>4.2 f</td>
<td>1.20 a</td>
<td>30.1 c-e</td>
<td>81.2</td>
<td>31-2</td>
<td>3.0 b-d</td>
<td>56.65</td>
<td>752</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>37.4 c-f</td>
<td>1358 b-e</td>
<td>4.7 ab</td>
<td>1.14 e-g</td>
<td>32.1 ab</td>
<td>82.5</td>
<td>41-1</td>
<td>3.3 a-d</td>
<td>54.45</td>
<td>739</td>
</tr>
<tr>
<td>PHY 339 WRF</td>
<td>36.6 ef</td>
<td>1372 b-d</td>
<td>4.5 c-e</td>
<td>1.17 a-d</td>
<td>31.1 bc</td>
<td>82.1</td>
<td>41-1</td>
<td>4.0 a</td>
<td>53.80</td>
<td>738</td>
</tr>
<tr>
<td>PHY 427 WRF</td>
<td>36.2 f</td>
<td>1204 de</td>
<td>4.4 d-e</td>
<td>1.12 g</td>
<td>30.3 c-e</td>
<td>80.8</td>
<td>41-1</td>
<td>3.3 a-d</td>
<td>54.20</td>
<td>653</td>
</tr>
<tr>
<td>PHY 417 WRF</td>
<td>38.1 b-d</td>
<td>1122 e</td>
<td>4.3 ef</td>
<td>1.13 fg</td>
<td>29.5 d-f</td>
<td>81.3</td>
<td>31-2</td>
<td>3.3 a-d</td>
<td>56.20</td>
<td>631</td>
</tr>
</tbody>
</table>

Mean.......................... 37.7 1428 4.6 1.15 30.1 81.8 3.7 54.25 775
LSD 0.01 247 0.2 0.03 1.4 1.35 0.8
CV 2.59 12.15 3.49 1.98 3.22 1.16 18.88
P(F) 0.0001 0.0023 0.0001 0.0001 0.0001 0.0068 0.0061

a Gin turnout = weight of lint as a percent of seed cotton weight, which is composed of lint, seed, trash, and excess moisture.
b Weight of lint (lb/A).
c Mic (micronaire) = a measure of fiber fineness or maturity. An airflow instrument measures the air permeability of a given mass of cotton lint compressed to a fixed volume. Low "mike" values indicate finer or less mature fibers.
d Fiber length = average fiber length of the longer one-half of the fibers sampled, in hundredths of an inch.
e Fiber strength = force required to break a bundle of fibers one tex unit in size. A tex is the weight in grams of 1,000 meters of fiber. HVI clamp jaw spacing is 1/8 inch.
f Uniformity = length uniformity is the ratio between the mean length and the upper-half mean length of the fibers, expressed as a percentage.
g HVI Color = color grade is a function of white reflectance (Rd) and yellowness (+b) of the lint sample. The HVI color code identifies the quadrant of the Nickerson-Hunter cotton colorimeter diagram in which Rd and +b values intersect (USDA, 1999).
h Leaf Grade = visual estimate of the amount of cotton plant leaf particles in a sample of lint. There are seven leaf grades represented by physical standards, plus a below grade designation.

Entries are listed according to value in $/Acre based on $0.52/lb +/- premium/discounts. Samples ginned at the University of Tennessee’s West TN Research and Education Center and classed at the USDA Classing Office in Memphis, TN.

REFERENCES CITED
Thank you to all the agribusinesses who generously support Farm Day.

GRACE FELLOWSHIP CHURCH HALL
1412 E Nashville Avenue
(West Highway 31)
Atmore, AL 36502
FEBRUARY 18, 2014

COTTON PRODUCTION MEETING

Topics Include:
2014 Crops Update, New varieties, Insect and Disease Control

David’s Catfish
1504 S. Main St.
Atmore, AL 36502
10:00 a.m.

RSVP: Call 251-867-7760
Deadline - February 10th

Kimberly J. Wilkins
Regional Extension Agent
Agronomic Crops
The UF/IFAS Panhandle Agriculture Extension Team is pleased to offer a Beekeeping Short-Course in February and March, 2014. These classes will be offered via interactive video conferencing at Extension Offices across the Panhandle. Please call your local UF/IFAS Extension Service (listed below) to register, and if you have any questions.

- Classes will be taught by Dr. Jamie Ellis and other state and nationally recognized experts from the University of Florida Honey Bee Research and Extension Lab and the Florida Department of Agriculture & Consumer Services Bureau of Plant and Apiary Inspection.
- Classes are three Monday evenings and one Tuesday evening from 6:00 – 8:00 pm Central Time, 7-9 pm Eastern Time, and a Saturday morning bee-yard field day.
- Each 30-50 minute presentation will be followed by a question/answer period
 - February 24: Honey Bee Biology and Anatomy
 - March 3: Varroa Mite Biology and Control
 - March 10: Honey Bees of the World and Beekeeping History
 - March 15: Bee-Yard Field-Day – A hands on learning opportunity
 - March 18: Yearly Management of the honey bee
- Registration for all five classes is $25 per person, or $40 for a family. This fee covers course materials and refreshments. Deadline to register is February 17, 2014.

Please contact your local UF/IFAS Extension Service (see list below) to register.

Bay County 850-784-6105 Holmes County 850-547-1108 Santa Rosa County 850-623-3868
Calhoun County 850-674-8323 Jackson County 850-482-9620 Wakulla County 850-926-3931
Escambia County 850-475-5230 Jefferson County 850-342-0187 Walton County 850-892-8172
Franklin County 850-653-9337 Leon County 850-606-5202 Washington County 850-6380
Gadsden County 850-875-7255 Liberty County 850-643-2229
Gulf County 850-639-3200 Okaloosa County 850-689-5850

An Equal Opportunity Institution.
WHAT IS A SPRAYER RODEO? It’s your chance to get your spray rig completely calibrated before the start of the new spray season. You will take your spray rig through four stations: 1) ground speed calibration in the field, 2) nozzle spray patterns and volume calibration, 3) pump pressure testing, and 4) equipment safety checklist and inspection.

This calibration operation with safety and equipment demonstrations by Extension agents and Smith Tractor professionally trained technicians will take about 1-2 hours for a given spray rig.

WHY SHOULD I PREPARE MY SPRAYER? Due to logistics, we can only handle 15 different spray rigs at Sprayer Rodeo Day so please RSVP and we will sign you up on a first-come first-serve basis. **You must bring CLEAN equipment** since people will be calibrating your spray tips. Please triple-rinse your tank and boom nozzles, fill your tank half-full with freshwater, and spray down your boom with freshwater. We will have more water available to re-fill tanks if necessary.

WHY YOU SHOULD CALIBRATE YOUR SPRAYER? Calibration quantifies the correct pesticide application rate. Overapplication of pesticide leads to increased chance of crop injury, potential environmental impacts from off-label application rates, and increased costs because of wasted product. Under-applications will result in poor pest control, increased costs because of need for re-application, and less income because of yield loss due to pest competition.

WHO SHOULD ATTEND? Any producer with ANY style of spray rig that wants to have their sprayer professionally calibrated for FREE.

WHEN AND WHERE WILL IT BE HELD?

February 25
Atmore Smith Tractor
RSVP to Eddie Booker 251-368-1720

February 26
Frisco City
Vince Byrd’s Airstrip
RSVP to Eddie Booker 251-368-1720

February 27
UF/IFAS Extension Santa Rosa County
Jimmy Nelson’s Airstrip
RSVP to Todd Watson 850-675-4505

February 28
Jay Corte’s Barn
RSVP to Eddie Booker 251-368-1720

When you call to RSVP, please give us information on your equipment set-up (tractor model, pull behind vs attached boom, boom size, number of tips on boom, tip sizes, pump model) so we will be prepared for your situation.

You must RSVP by calling one of the Extension agents listed above before bringing your sprayer.

Smith Tractor is providing lunch, so make plans to stay. All sprayer models are welcomed.
POMEGRANATE SEMINAR
WEST FLORIDA RESEARCH & EDUCATION CENTER
4253 EXPERIMENT ROAD, HWY 182, JAY, FL 32565

Topics Include:
- History of Pomegranates
- Botany
- Cultivars
- Cultural Practices
- Recommendations on what cultivars to plant
- View Pomegranate Website & Question and Answer Session

FEBRUARY 24, 2014
10 AM—12 PM

Expert speaker Bill Castle, Professor Emeritus, joining us from the University of Florida, Citrus Research and Education Center

LUNCH WILL BE PROVIDED

SEATING IS LIMITED!! R.S.V.P by calling Robin Vickers at 850-983-7134
2014 training sessions will be held at the following locations. If you are new to the program you are required to attend one of the following training sessions. ALL growers are encouraged to attend training sessions. There is no cost to attend training or join this program. The meeting will last approximately one hour. We will provide information about the EBT cards to be implemented in 2015!

Gainesville – February 17th - @ 3:00 pm & 6:00 pm
1911 SW 34th Street, Gainesville, FL 32608 (½ mile North of Archer Road, near I-75)

Gainesville – February 18th - @ 9:00 am
1911 SW 34th Street, Gainesville, FL 32608 (½ mile North of Archer Road, near I-75)

Live Oak – February 18th – Suwannee County Extension Office @ 2:00 pm
1302 11 Street SW, Live Oak, FL 32064 (Suwannee County Fairgrounds)

Marianna – March 4th – Jackson County Extension Office @ 6:00 pm ct
2741 Pennsylvania Avenue, Suite 3, Marianna, FL 32448

Panama City – March 11th - Panama City Fairgrounds @ 11:00 am ct
2230 East 15th Street (Highway US 98) Panama City, FL 32405

Pensacola – March 11th – Escambia WIC Clinic @ 6:00 pm ct
1295 W Fairfield Drive, Pensacola, FL 32501

Milton – March 12th – Santa Rosa County Extension Office @ 10:00 am ct
6263 Dogwood Dr. Milton, FL 32570

Crestview – March 12th – Okaloosa County Extension Office @ 3:00 pm & 6 pm ct
3098 Airport Rd., Crestview, FL 32536

Defuniak Springs – March 13th – Walton County Extension Office @ 10:00 am ct
732 N 9th Street, DeFuniak Springs, FL 32433

Chipley – March 13th – Washington County Extension Office @ 1:00 pm ct
1424 Jackson Avenue, Suite A, Chipley, FL 32428

Tallahassee – March 6th – Leon County Extension Office @ 6 pm
615 Paul Russell Road, Tallahassee, Florida 32301. ¾ miles East of Monroe St, Tallahassee

For more information about the FMNP program, dates, times and/or locations, please contact:
Woody Lewis
Bureau of Food Distribution - 600 South Calhoun Street,
Tallahassee, Florida 32399-0800 Phone: (850) 617-7179